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Abstract: The calculation of the solvation properties of a single water molecule in liquid water is carried out in two 
ways. In the first, the water molecule is placed in a cavity and the solvent is treated as a dielectric continuum. This 
model is analyzed by numerically solving the Poisson equation using the DelPhi program. The resulting solvation 
properties depend sensitively on the shape and size of the cavity. In the second method, the solvent and solute molecules 
are treated explicitly in molecular dynamics simulations using Ewald boundary conditions. We find a 2-kcal/mol 
difference in solvation free energies predicted by these two methods when standard cavity radii are used. In addition, 
dielectric continuum theory assumes that the solvent reacts solely by realigning its electric moments linearly with the 
strength of the solute's electric field; the results of the molecular simulation show important nonlinear effects. Nonlinear 
solvent effects are generally of two types: dielectric saturation, due to solvent-solute hydrogen bonds, and electrostriction, 
a decrease in the solute cavity due to an increased electrostatic interaction. We find very good agreement between 
the two methods if the radii defining the solute cavity used in the continuum theory is decreased with the solute charges, 
indicating that electrostriction is the primary nonlinear effect and suggesting a procedure for improvement of continuum 
methods. The two methods cannot be made to agree when the atomic radii are made charge independent, but charge 
dependent cavity radii are shown to greatly improve agreement. 

Introduction 

Dielectric continuum methods based on the numerical solution 
of the Poisson equation provide estimates of solvation free energies. 
Because this approach is much faster than full molecular dynamics 
simulations, continuum theory (CT) has been applied to a wide 
variety of systems, from aqueous solutions of large solute molecules 
such as proteins and nucleic acids to small solutes such as atomic 
ions.1 The widespread use of such continuum calculations makes 
it important to test them against simulations with explicit solvent 
molecules and against experimental data where available. Pre
vious comparisons of continuum theory and molecular simulations 
have found good agreement for solvation energies, typically about 
10%.2'3 The focus of this paper will be to compare continuum 
theory with full molecular simulations of a small polar solute for 
equilibrium properties such as solvation energies, electrostatic 
potentials, and average electric fields from which the electrostatic 
forces can be calculated. 

The solvation process studied here is the solvation of a single 
water molecule in liquid water. The free energy of solvation, 
zL4S0i, of a water molecule can be decomposed into a three-step 
process: (1) removal of the gas-phase partial charges from the 
gas-phase water molecule (A^ s ) ; (2) insertion of the uncharged 
water molecule into the solvent making a hydrophobic cavity in 
the bulk water (AA^); and (3) charging the water solute to the 
desired liquid-phase charges (AA^) (see Figure I).4 The free 
energy, AA*™, for the first step is the self-energy for electronic 
polarization in the gas phase or the free energy difference between 
the isolated molecule with its gas-phase partial charges and with 
no partial charges. The free energy for the liquid-state charging 
step, AACS, contains two parts, a self-energy for polarization in 
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Figure 1. Thermodynamic cycle for the solvation of water in water. 

the liquid phase and a solvent electrostatic contribution. The 
two polarization terms will not completely cancel since the gas-
phase and solution charges are not necessarily (or generally) equal 
and also the polarization energy will depend on the medium. The 
two polarization-energies are commonly neglected (but see refs 
4 and 5). 

The solvent electrostatic contribution to the free energy is the 
focus of this paper and is the subject of comparison between the 
full molecular simulation and the continuum calculations. This 
step consists of reversibly charging the hydrogen charge, QH, on 
the solute water molecule from 0 to 0.5e (the oxygen charge, Qo, 
equals -2Qa) while keeping the solvent charges equal to the usual 
liquid-state values. (We are including charges higher than 
Q$—higher than is necessary for the evaluation of AAa for 
H2O—in order to look at the effects of high charge.) In the 
continuum approximation, all the solvent electrostatic properties 
are contained in the dielectric constant, e. Setting e equal to the 
same value given by the molecular potential used in the simulation, 
we can assure self-consistency. 

The properties of interest are the energy of the solute, the 
average electrostatic potential, and the field of the solvent at the 
solute charge sites. The electrostatic potential, <j>, at position rla 
(where 1 labels the solute molecule and a labels the charge site) 

(5) Berendsen, H. J. C; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 
1987, 97,6269-6271. 
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due to the solvent is given by 

tfrj-E LG»/|ri.-'yol (1) 

1-1 / 3=1 

The electrostatic potential energy of the solute is 

3 

(UJ = EG«<*«> M 
a=l 

and the electric field is 

UV ^ MO \ 
E(rJ = -\^7/ (3) 

where the brackets <•••) indicate an average over the solvent 
configurations. The free energy, AA&, for the solute with a set 
of partial charges Q can be calculated by using the charging 
integral, 

= J0
1WxAd* (4) 

where the angular brackets, <—>x> indicate an ensemble average 
with the solute charges equal to XQ.6 Equation 4 is integrated 
numerically by performing simulations at 11 different hydrogen 
charges, ranging from 0 to 0.5. 

Continuum theories assume that the solvent response to the 
solute is linear in the solute charge. Specifically, the potential, 
0(rio), is linear in the charge Qa and therefore, from eq 4,.AAa 

« Q2. The results of the simulations will test the assumption of 
linear response. Specifically, continuum theory based on the 
Poisson equation is a linear theory in that it assumes that the 
orientations of the solvent molecules respond linearly to the electric 
field of the solute.7 In real molecular liquids, nonlinear responses 
not described by the Poisson equation arise from many factors 
including the formation of solute-solvent hydrogen bonds and 
electrostriction, the decrease in the excluded volume of the solute 
due to the increased solute-solvent Coulombic interaction. Strong 
hydrogen bonds prevent the solvent from further responding to 
the solute causing dielectric saturation which decreases the 
solvation energy. On the other hand, electrostriction increases 
the solvation energy. 

Methods 

The water potential used here is the SPC potential, characterized by 
an OH bond length of 1 A, an HOH bond angle of 109.47°, charges on 
the hydrogens and oxygen equal to 0.41e and -0.82e, respectively, and 
a Lennard-Jones interaction between oxygen atoms with a well depth, 
e/fce, equal to 78.2 K and a radius, a, equal to 3.166 A.8 The molecular 
dynamics simulations were performed on the Connection Machine CM-5 
with use of a direct N2 method,9 with 511 solvent molecules and 1 solute 
molecule. Periodic boundary conditions, using the Ewald sum for the 
long-ranged electrostatic potentials, a time step of 1 fs, and the SHAKE 
algorithm for enforcing bond constraints, are used.10 The simulations 
are done in the canonical (constant T, V, N) ensemble by coupling to a 

(6) McQuarrie, D. A. Statistical Mechanics; Harper and Row: New York, 
1976. 

(7) Bottcher, C. J. F. Theory of Electric Polarization; Elsevier: Amsterdam, 
1973. 
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J. Intermolecular Forces; Pullman, B., Ed.; Reidel, Dordrecht, Holland: 
Dordrecht, The Netherlands, 1981; p 331. 

(9) Lynch, D. L.; Rick, S. W.; Gomez, M. A.; Spath, B. W.; Doll, J. D.; 
Pratt, L. R. J. Chem. Phys. 1992, 97, 5177-5181. 

(10) Allen, M. P.; Tildesley, D.J. Computer Simulation of Liquids; Oxford 
University Press: Oxford, 1987. 

Nose1 thermostat10'11 and are at a density of 1 g/cm3 and a temperature 
of 300 K. Each data point at a given charge represents a 40-ps simulation.12 

The electrostatic potential with periodic boundary conditions is 

N 

* ( r '«> = E E E Q^° - *»+"i (5) 

where the prime on the sum over periodic images n indicates that for n 
= 0 the term j = 1 is omitted. In the standard Ewald evaluation of eq 
5, the energy is written as a sum of four terms, 

JV 
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where /c is a parameter in the Ewald sum chosen for computational 
convenience to be 6/i, L is the length of the primary simulation cell, and 
G is a recriprocal lattice vector of the periodic simulation cells.10 

In the continuum calculations, the solute is characterized by a molecular 
cavity defined by spheres around each charge site and a dielectric 
continuum outside this cavity. The potential, <£, can then be found by 
solving the Poisson equation 

V-e(r)V<Hr) + 4irp(r) = 0 (7) 

where e(r) is a position-dependent dielectric constant, equal to 1 inside 
the solute cavity and 65 outside (65 is the dielectric constant of the SPC 
water model,13'14 and p(r) is the charge density. Equation 7 is solved 
using the DelPhi program, which discretizes space on a cubic grid (with 
65 X 65 x 65 points).15 This approach is thus based on a finite-difference 
solution of the Poisson equation. The calculations reported here use 
focusing boundary conditions, in which successive calculations are done, 
each with a finer mesh, using the previous coarser grid results to correct 
for the long-range boundary effects. At the highest resolution, 80% of 
the grid points are inside the solute cavity, corresponding to a grid spacing 
of about 0.034 A. The water molecule geometry is the SPC geometry. 
The oxygen cavity radius, ro, is set equal to 1.77 A and the hydrogen 
cavity radius is 0.8 A. The oxygen radius is about 2~s/6c, one-half the 
minimum of the Lennard-Jones potential. This is the standard method 
for choosing radii in DelPhi calculations.2'4 

Results and Discussion 

The free energies corresponding to the molecular dynamics 
(MD) simulations and to the CT calculations are shown in Figure 
2. At the charge value of SPC water (Qa = 0.41), the MD and 
CT yield -8.4 ± 0.5 and -10.5 kcal/mol, respectively, for AAa. 
The reported error bars are two standard deviations. This 
difference of about ±2 kcal/mol between the two methods is 
comparable to the agreement between the CT and molecular free 
energy calculations (using the TIP4P water potential) for several 
solutes (but not water).2 The charge dependence for the 
simulation data is not quadratic, as can be seen by the poorness 
of a quadratic fit (the dotted line). 

Previous calculations for SPC and also TIP4P water embedded 
in a dielectric continuum find AAa = -10.96 and -10.89 kcal/ 
mol, respectively.16 These calculations use an oxygen cavity radius 

(11) Nose, S. MoI. Phys. 1984, 52, 255-268. 
(12) For the point at QH = 0.41, the solute and solvent charges are the same 

and solute properties can be calculated using all the particles of the simmulation, 
greatly increasing the accuracy of data points at this charge value. 

(13) Alper, H. E.; Levy, R. M. /. Chem. Phys. 1989, 91, 1242. 
(14) Belhadi, M.; Alper, H. E.; Levy, R. M. Chem. Phys. Lett. 1991,179, 

13. 
(15) Nicholls, A.; Honig, B. J. Comp. Chem. 1991, 12, 435. 
(16) Rashin, A. A.; Namboodiri, K. J. Phys. Chem. 1987, 91,6003-6012. 
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Figure 2. Free energy, AAa, from MD simulations (solid line) and DelPhi 
continuum calculations (dashed line) as a function of solute charge (in 
kcal/mol). The dashed line is a quadratic fit to the simulation data. 

20 

10 

0 

W -io 

-20 

0.1 0.2 0.3 
QH 

Figure 3. The average electrostatic potential, (0> (in kcal/(mol e)), at 
the hydrogen (solid lines) and oxygen (dashed lines) position, comparing 
the MD simulations (the lines showing data points and error bars) with 
DelPhi continuum results (no point symbols). 

of 1.5 A and a hydrogen cavity radius of 1.16 A. The sensitivity 
of the CT results to these input parameters will be discussed 
below. Other CT calculations by Sharp et al* for the TIP4P 
geometry, which include polarizability of the solute, find A^es = 
-9.3 kcal/mol. There have been calculations of \AS0\ from 
molecular simulations, but the electrostatic part, A^e8, was not 
reported so there is no other molecular simulation with which to 
compare.17 

Figure 3 shows the average electrostatic potentials, (</>). The 
MD and CT results are qualitatively different in two respects: 
(1) (</>H> and (4>o) from the MD simulations are not linear in 
charge and (2) (<£H) and (fo) from MD are not zero at zero 
charge, whereas the 0's from the CT calculations are linear in 
charge and zero at zero charge. As is well-known, molecular 
water solvates a small uncharged solute by forming a clathrate 
cage around the uncharged sphere.18 For realistic water potentials, 
the electrostatic potential is not zero inside the cage because 
fluctuations of the water molecules that form the clathrate cage 
are knwon to bring the hydrogen atoms closer to the cage than 
the oxygen atoms. This is apparent from the charge distribution 
function (see below). Since the positive charges can get closer 
than the negative charges there is a net electrostatic potential 
inside the sphere. However, it is the spatial dependence and not 
the exact value of <j> that is important because (1) properties such 
as the electric field and the energy are invariant with respect to 
an additive constant in 0 and (2) the exact value of (<j>> is strongly 
dependent on the choice of boundary conditions used in the Ewald 
sum. In the Ewald summation, the periodically replicated system 
must be surrounded by a medium; in eq 6 the medium is taken 
to be an insulator (this boundary term is the third term on the 
right-hand side of the equation). If the surrounding medium is 
taken to be a conductor, then this term vanishes.10 The boundary 

(17) Mezei, M. MoI. Phys. 1982, 47, 1307-1315. 
(18) Davidson, D. W. Water, a Comprehensive Treatise; Franks, F., Ed.; 

Plenum: New York, 1975; Vol. 4, Chapter 1. 

Figure 4. Electric field, E (kcal/(mol e A)), in the x direction at the Hi 
hydrogen atom (top) and in the y direction at the hydrogen and oxygen 
atoms (bottom) comparing MD simulation (solid (H) and dashed lines 
(O)) and DelPhi continuum calculations (dashed lines). In the continuum 
model Ey at the H and O sites are equal; for the simulation there is a small 
difference (see text). See the upper left-hand corner for the definition 
of the coordinate system. 

conditions have only a slight influence on most properties; however, 
for the electrostatic potential the boundary conditions give rise 
to a large constant term. 

The electric field, E, arising from the solvent at each solute site 
is shown in Figure 4. The geometry of the water molecule is 
shown in the upper left corner of Figure 4. The top panel shows 
the x component of the field, Ex, at the position of the hydrogen 
Hi, Ex at the other hydrogen is minus the field at Hi, and Ex at 
the oxygen is zero. The bottom panel shows the y component of 
the field at the oxygen and hydrogen positions. Since there is no 
net force on the molecule and for the continuum solvent all forces 
are Coulombic then 

£eaE(rla) = 0 

and the y component of the field at the oxygen site and hydrogen 
sites must be equal. For the SPC simulations, there is an additional 
force on the oxygen atom due to the nonbonded Lennard-Jones 
interaction which has a small nonzero component in the .y direction 
(at QH = 0.41, it is 1.47 kcal/(mol A)) so the net force is zero 
but the electrostatic fields do not exactly balance. The field from 
the MD simulation is not linear in charge, unlike the CT field. 
This is consistent with the simulation results for the electrostatic 
potential, <j>, being nonlinear and the free energy, AAts, being 
non-quadratic (Figures 3 and 4). A non-quadratic charge 
dependence was reported by Jayaram et al.3 for the solvation of 
a spherical cation. 

Any conclusions regarding the validity of dielectric continuum 
theory are of course dependent on the input parameters, 
particularly on the radii, /"o and r». The values for the AAes, the 
x and y components of the electric field, and the Coulomb energy, 
(Ua), are given in Table 1. (From the fact that the electrostatic 
potential (4>) is linear in charge, it follows from eqs 2 and 4 that 
A/les = (t/es) /2 for the continuum results.) Also shown on Table 
1 are the SPC simulation results and the results of two approximate 
models (see below). Some cavity radii give accurate estimates 
for the free energy, but it is not possible for continuum theory 
to simultaneously predict values of AA&, <t/es), and the electric 
field, E, to within 20%. In addition, the charge dependence of 
(t4s) and E must be linear and AA& must be quadratic, in contrast 
to the results of the simulation. There are sets of radius parameters 
which will give the best quadratic fit to the simulation free energy. 
Two such sets are (rQ = 1.88 A, rH = 0.80 A) and (r0 = 1.83 
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Table 1. Comparison of the MD Simulation Results (First Row) 
with Continuum Theory (CT) Results for a Variety of Cavity Radii 
(ro. '"H). the Scaled Radius CT Results, and Semicontinuum Results 
with n Explicit Neighbors" 

simulation 
CT (r0 = 1.77,/-H = 0.80) 
(r0 = 1.88, rH = 0.80) 
(/•0= 1.83, rH= 1.00) 
( ro= 1.80, m= 1.00) 
( r 0 = 1.70,/-H= 1.10) 
( ro= 1.50,/-H= 1.16) 
scaled radius CT 
semicontinuum (n = 4) 
(n = 6) 
(« = 8) 

A^cs 

-8.4(5) 
-10.5 
-8.2 
-8.2 
-8.6 
-8.7 
-10.1 
-8.4 
-11.3(3) 
-10.3(4) 
-9.7(5) 

(Ua) 

-23.32(6) 
-21.0 
-16.4 
-16.4 
-17.2 
-17.4 
-20.2 
-23.6 
-26.1(1) 
-25.2(4) 
-24.2(2) 

£*(rm) 

22.2(1) 
25. 
17. 
14. 
15. 
12. 
12. 
26. 
26.1(7) 
24.0(7) 
22.9(3) 

Ey(rm) 

33.6(1) 
32. 
25. 
25. 
26. 
27. 
31. 
35. 
39.2(4) 
37.6(5) 
36.1(2) 

" The properties listed are the free energy, AA„, the Coulomb energy, 
(£/«>, both in kcal/mol, and the x component, Ex, and y component, E1n 
of the electric field in kcal/(mol e A) (see Figure 4) for a solute with Qn 
= 0.41. The numbers in parentheses are two standard deviation error 
estimates. 
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Figure 5. Solvent charge distribution (determined from the MD 
simulations) about the solute oxygen site for (a) Qn = 0, (Jo)Qn = 0.25, 
and (c) Qn = 0.50. The arrows indicate the optimized oxygen cavity 
radius. 
A, rH = 1.00 A) which will give the free energy curve shown by 
the dotted line of Figure 2. 

The solvent reorganization that results from increasing the 
charge of the solute molecule is reflected in the radial distribution 
of charge, defined by 

5 s=i 
(8) 

where p is the bulk density of the solvent, the factor of 3 in the 
dominator is introduced to reflect that there are three atomic 
sites, and ga$ is the pair correlation function between the atomic 
sites a on the solute and /3 on the solvent molecules.19 Figure 5 
shows Qo(Z)—the radial distribution of charge as a function of 
distance from the solute oxygen site—for three values of the solute 
charge: Qn = 0, 0.25, and 0.50. The distribution functions 
oscillate between positive hydrogen atom peaks and negative 

(19) Hirata, F.; Redfern, R.; Levy, R. M. Int. J. Quantum Chem. Quantum 
Biol. Symp. 1988, IS, 179-190. 

Ev 

Figure 6. As for Figure 4, but comparing MD simulation (solid lines), 
DelPhi continuum results with fixed radii (dashed lines), and scaled radii 
continuum results (dotted lines). 

oxygen atom peaks. As the charges on the solute are increased, 
the first peak moves in. In addition, a peak grows in at a O-H 
hydrogen bond distance of 1.8 A. This hydrogen bond peak is 
faintly visible at Qn = 0.25 and is prominent at Qn = 0.50. 

We focus on two of the possible explanations of the breakdown 
of dielectric continuum models: (1) dielectric saturation, in which 
the orientational ordering (from hydrogen bonds) of the first 
solvation shell decreases the dielectric response of the solvent, 
and (2) electrostriction, in which the solvent molecules come into 
closer contact with the solute molecule as its polarity is increased, 
and which thus leads to a decrease in the solute cavity as solute 
charge is increased. Dielectric saturation effects decrease the 
solvation energy whereas electrostrictive effects increase the 
solvation energy. Both of these solvent responses are visible in 
Figure 5. We will take two approaches to understanding the 
differences in the MD simulation free energies and the continuum 
free energies. In one, we will scale the cavity size with solute 
charge in the continuum model. In the other, we will explicitly 
include first shell waters in the CT calculations. 

Scaled Radius. From Figure 5, for Qn — 0 the cavity is larger 
than 2_5/6(T (=1.78 A), since the solvent peak does not start until 
after 2 A, and the CT results, which use 1.77 A as a cavity radius, 
therefore overestimate the free energy at low charges (see Figure 
2). This raises a question as to whether the differences between 
the simulation and CT calculations are due to the approximation 
of a continuum solvent or just an inconsistent choice of cavity 
size. Estimates of the cavity size can perhaps be found from an 
examination of the liquid structure, although assigning a sharp 
solute/solvent boundary from a continuous distribution is 
ambiguous. A simple heuristic method is to find the radius which 
gives the best value for the Coulomb energy, ([/«>. For each 
value of Qn the optimal oxygen radius is found (the hydrogen 
radius is set equal to a constant value of 0.8 A) and the free 
energy is calculated from eq 4. The resulting (Ues) and AA& are 
in almost exact agreement with the simulation values (see Table 
1). Of course, this agreement is by construction and with one 
adjustable parameter it is a trivial accomplishment to fit the 
simulation energies. However, this method also gives good values 
for the electric fields, which is not by construction (see Figure 
6). The optimized oxygen radius is shown for each value of the 
hydrogen charge in Figure 7 (there is no optimized value at Qn 
= 0 since at this point (UK) = 0 ) . The oxygen radius shows a 
strong charge dependence—the radius varies by 30% over the 
range of charges—and this dependence is approximately linear 
with a slope of about 1.2 A/e. There is some uncertainty in the 
radius for low values of the charge since the energy is small and 
variations of ±0.1 A in ro give rise to energies which are all 
within the error bars of the simulation. The values of the scaled 
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Figure 7. Optimized oxygen cavity radius, ro, as a function of solute 
charge. 

AA„/Q„ -20 

Figure 8. Free energy divided by hydrogen charge, Qn, for the full MD 
simulation (long-dashed line), semicontinuum with 4 neighbors (dotted 
line), semicontinuum with 8 neighbors (short-dashed line), and the 
continuum theory (solid line). 

ro are shown by the arrows on Figure 5 indicating that these radii 
are consistent with the liquid structure. The arrow on the Qn = 
0 plot is the radius for g H = 0.05. 

Semicontinuum Methods. In this model the nearest neighbor 
solvent water molecules are treated explicitly and the rest are 
treated as a continuum. This method could include both dielectric 
saturation effects as the first solvation shell orders around the 
solute and electrostriction effects as the first solvation shell moves 
closer to the solute. The focus of this analysis is to see if we can 
explain the nonlinear effects seen in the simulation in terms of 
reorganization of the local solvation shell. This method is 
implemented as follows. Configurations generated from the SPC 
simulation are taken and the coordinates of the solute plus its n 
nearest neighbors are input into the DelPhi program. This is 
done for about 300 configurations, each taken 0.1 ps apart. The 
energy and fields on the central solute will now be a sum of a part 
coming from the n explicit nearest neighbors and the dielectric 
continuum. This model is similar to previous semicontinuum 
methods, although here (1) we are averaging over configurations 
of the first shell molecules and not using thermodynamic data for 
the first shell contribution as is done in the other studies and (2) 
we are taking an arbitrary surface for regions beyond the first 
shell (as defined by the radii of the first shell atoms) and not a 
spherical shell.20,21 Another semicontinuum study by Rashin and 
Bukatin includes one first shell water inside the continuum and 
thermodynamic properties are found by integrating numerically 
over the solute and single solute water coordinates and then 
extrapolating to a full hydration shell.22 We are treating the 
number of explicit water molecules, «, as a variable, ranging 
from 4 to 8, in order to measure how many solvent molecules are 
strongly influenced by the solute. 

Figure 8 compares the results of the full simulation, the 
continuum theory (with r0 = 1.77 A and rH = 0.80 A), and the 

(20) Pitzer, K. S. / . Am. Chem. Soc. 1972, 94, 1476. 
(21) Pitzer, K. S. J. Phys. Chem. 1983, 87, 1120. 
(22) Rashin, A. A.; Bukatin, M. A. /. Phys. Chem. 1991, 95, 2942-2944. 

Figure 9. As for Figure 4, but comparing simulation (solid lines) results 
with semicontinuum results for 4 (dotted lines) and 8 neighbors (dashed 
line). 

semicontinuum results with 4 and 8 neighbors. This figure gives 
AAes divided by g H versus QH. The semicontinuum results and 
the full md simulation exhibit a similar nonlinear dependence on 
A/4es/6H on Qu, although the deviations from linearity are not 
as great for the semicontinuum model. This means that the 
nonlinear effect is largely local, as is also supported by the scaled 
radius analysis. At low charges the n = 4 semicontinuum results 
are essentially the same as the pure continuum results, implying 
that we have not included enough explicit neighbors. At high 
charges the semicontinuum results are different from the 
continuum results. The free energy at a given charge depends 
on values of the potential at lower charges, through eq 4. 
Continuum theory with radii TQ, = 1.77 A and rH = 0.8 A 
overestimates (£/„) at low charges (because the oxygen radius 
is too small, see the preceding section) and underestimates it at 
higher charges (see Table 1). The n = 4 semicontinuum results 
also overestimate the potential energy at low charges (because 
it has not included enough neighbors and is similar the pure 
continuum results), and at higher charges, it does not have the 
same fortuitous and compensating underestimation of {£/«) 
(because at higher charges four solvating waters can more 
adequately describe the local environment). Therefore, the 
continuum theory gives better estimates of the free energy at 
high charge than the n = 4 semicontinuum method. For other 
properties, such as (Ues) (Table 1) and the electric fields (Table 
1 and Figure 9), the semicontinuum methods are closer to the 
simulation results and as n increases, the agreement improves. 
At Qn = 0.41 the first solvation shell contains 5 neighbors as 
measured by integrating the goo out to the first minimum. At 
QH = 0, the first solvation shell is broader and contains more 
molecules (about 16). By including up to 8 explicit neighbors in 
the semicontinuum model we are then including all the first shell 
solvent molecules of the higher charge solute, but only some of 
the first shell molecules of the lower charge solute. At the highest 
charges, above 0.41, the semicontinuum results are the same for 
4 and 8 neighbors, so at these charges there is strong tetrahedral 
ordering and 4 nearest neighbors are enough to describe the local 
structure. 

Conclusion 

The simple example of solvation presented here is that of a 
single water molecule with partial charges on the atomic sites 
which are varied between zero and values greater than the charges 
for water (a partial charge on the hydrogen atoms equal to 0.50e). 
The continuum theory (CT) calculation by definition shows a 
simple quadratic dependence on charge for the free energy, &AK, 
and a linear dependence for electrostatic potential, </>, and the 
electric fields, E. From the MD simulations, the charge depen-
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dence of X4K is definitely non-quadratic and that of (<t>) and E 
nonlinear (see Figures 2, 3, and 4). The MD simulations then 
indicate that some type of solvent reorganization other than the 
reorientation of the electric moments of the solvent molecules is 
occurring as the solute is charged. Because these effects are 
important and because they are not included in the CT calcula
tions, continuum theory cannot simultaneously predict free 
energies, potential energies, and electric fields to within 20% no 
matter what radius parameters are used (see Table 1). There are 
sets of radius parameters which will predict the free energies 
shown by the dotted line in Figure 2, which represents the best 
quadratic fit to the simulation free energy. 

Two simple models are suggestive of the types of solvent 
reorganizations that are important to this solvation process. These 
models also provide a method to improve continuum theory. In 
one model, the size of the solute cavity is charge dependent (scaled 
radius) and in the other model the system inside the dielectric 
continuum contains the solute together with explicit neighboring 
solvent molecules (semicontinuum). The energies and free 
energies for all of the different methods (MD simulation, pure 
continuum theory, scaled radius, and semicontinuum) are sum
marized in Table 1. As can be seen from this table and also from 
Figure 6, the scaled radius method provides a good estimate of 
the free energy and the electric fields. The agreement between 
the scaled radius and MD simulation results for the Coulomb 

energy, (CM), is by construction since (£/«) is used to determine 
the scaled radius. The success of the scaled radius calculations 
suggests that electrostriction plays a more important role than 
dielectric saturation of close-lying solvent molecules in explaining 
the deviations of the continuum model from the full molecular 
solvent. The oxygen radius used in the scaled radius method 
varies by a large amount (30%) with the charges of the solvent 
(see Figure 7). This large decrease in the solute cavity is also 
seen in the liquid correlation functions from the simulation (see 
Figure 5). 

In conclusion, simple continuum theory, as usually implemented 
in DelPhi calculations, is not capable of determining free energies 
to better than 2 kcal/mol accuracy and gives inaccurate predictions 
of electrostatic potentials and electric fields. We believe that 
continuum theory can be improved to give better than 1 kcal/mol 
accuracy by adopting charge dependent radii to allow for 
electrostrictive effects. It remains to invent a theoretical model 
that predicts how site radii should be scaled with charge. 
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